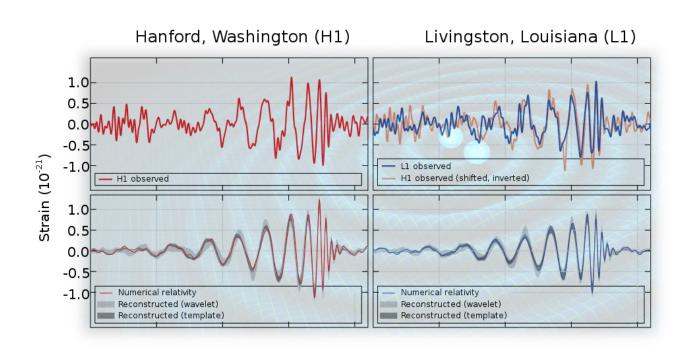
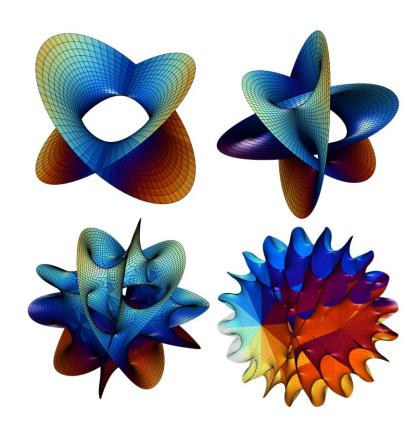
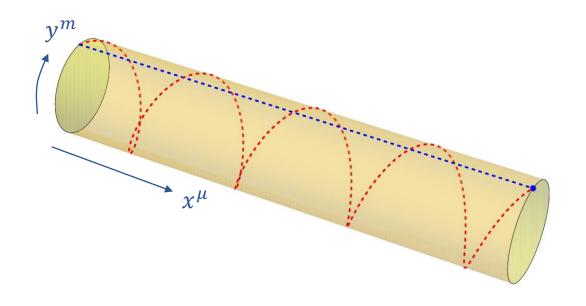

Gravity at the Tip of the Throat

Bruno Valeixo Bento


Based on [2204.02086] in collaboration with:


Dibya Chakraborty, Susha Parameswaran, Ivonne Zavala

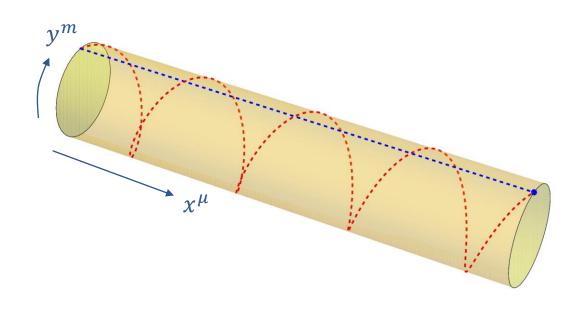
Spoiler


The Question

Can GWs tell us about (warped) extra dimensions?

Kaluza-Klein modes

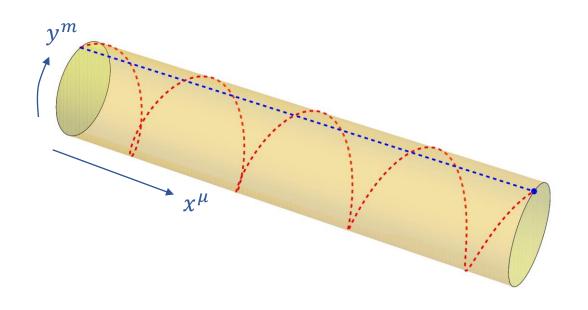
$$p^{\mu}p_{\mu} = -m^{2} - p^{n}p_{n}$$


$$m_{2}$$

$$m_{k}^{2}$$

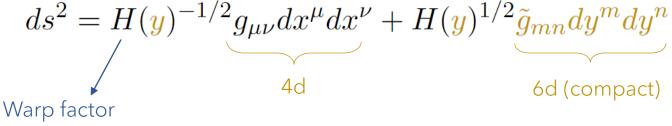
$$M_{KR}$$

The tower is the signature of extra dimensions.

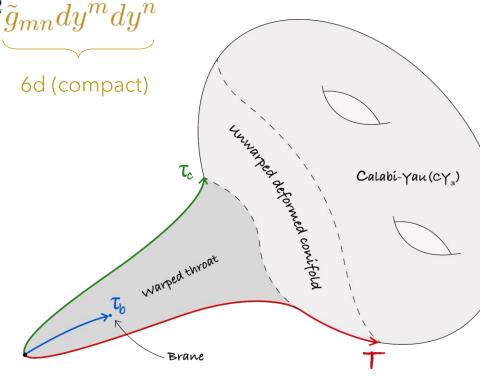

Kaluza-Klein modes

The tower is the signature of extra dimensions.

Kaluza-Klein modes

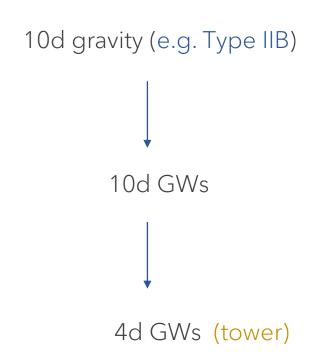


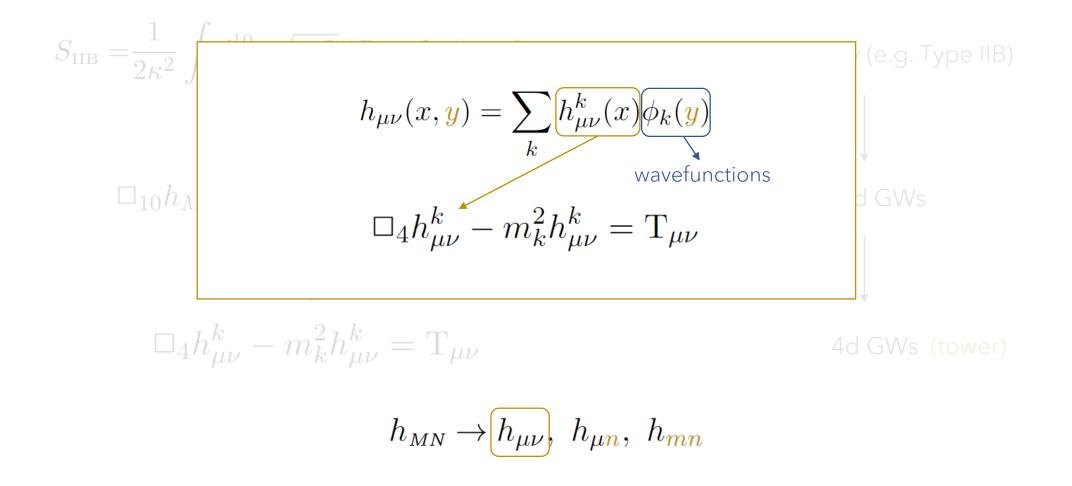
The tower is the signature of extra dimensions.


Warped compactification

String Theory: 10d → 4d

The warping makes scales position (y^m) dependent


What does it do to Gravitational Waves?



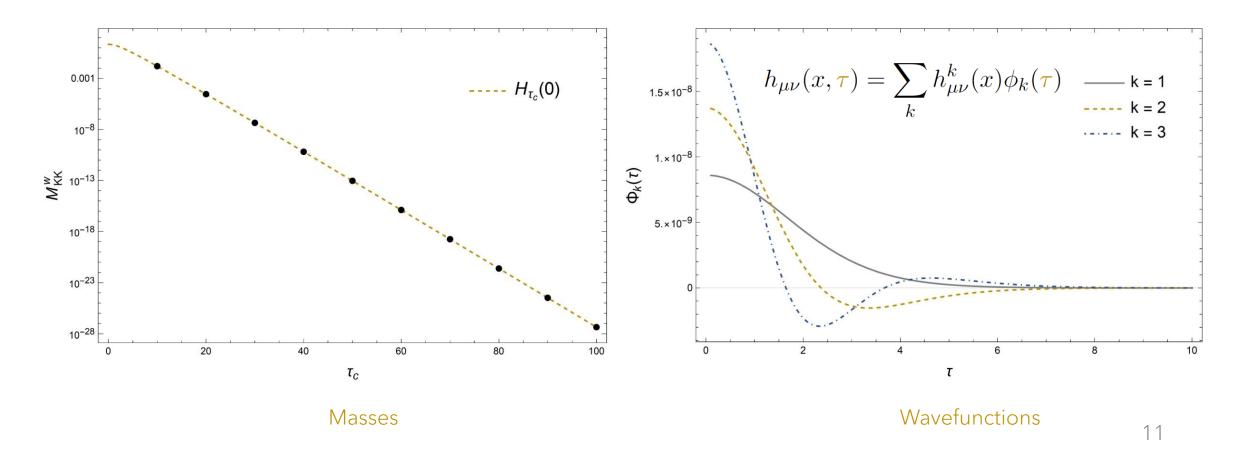
$$S_{\text{IIB}} = \frac{1}{2\kappa^2} \int d^{10}x \sqrt{-G} \left(R + \mathcal{L}_{\text{IIB}}\right) + S_{\text{brane}}$$

$$\Box_{10} h_{MN} + 2\bar{R}_{MPNQ} h^{PQ} = T_{MN}^{(1)}$$

$$\Box_{4} h_{\mu\nu}^{k} - m_{k}^{2} h_{\mu\nu}^{k} = T_{\mu\nu}$$

$$\Box_4 h_{\mu\nu}^k - m_k^2 h_{\mu\nu}^k = \mathrm{T}_{\mu\nu} \quad \leftrightarrow \quad \text{Tower of GWs } (f_{\text{GW}} \sim m_k)$$

OBSERVATION

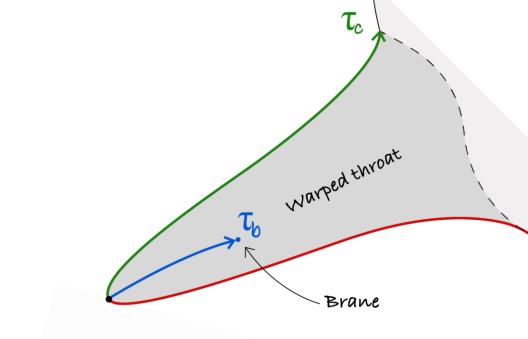

 f_{GW} cannot* be too high (10⁴ Hz ~ 10⁻²³ eV)

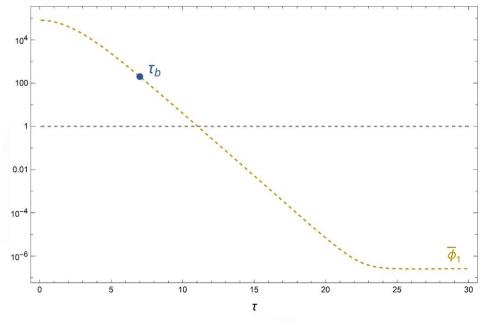
QUESTION

Wouldn't we have seen $h_{\mu\nu}^k$ already?

KK Gravitons

*Fully warped limit ($\tau_c = T$)


Braneworld


For a brane somewhere in the throat

$$\mathcal{L}_{\mathrm{brane}} \sim \sum_{k} \overline{\frac{\phi_{k}(au_{b})}{M_{P}}} h_{\mu
u}^{k} T^{\mu
u}$$

Gravitational interactions on the brane include the whole tower

$$h_{\mu\nu}(x, \mathbf{y}) = \sum_{k} h_{\mu\nu}^{k}(x) \phi_{k}(\mathbf{y})$$

12

Do we see the extra dimensions?

The wavefunctions weigh the contribution of each mode

$$V(q) = \lim_{q^0 \to 0} \sum_{k} \left| \frac{\overline{\phi}_k(\tau_b)}{M_P} \right|^2$$

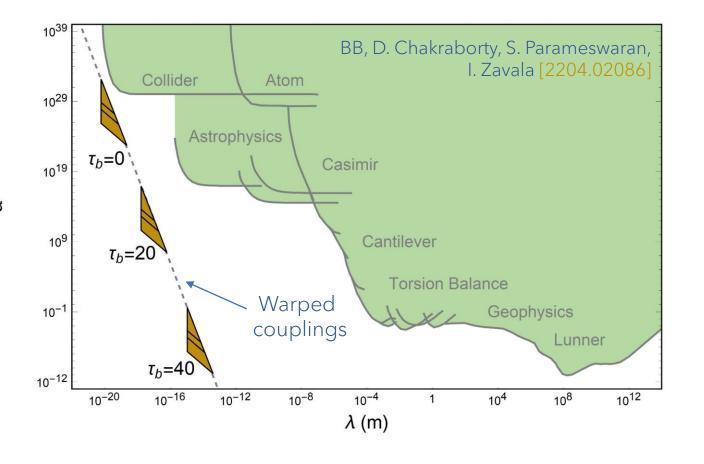
To compare with experiments we express it as

$$V(r) = G \frac{m_1 m_2}{r} \left(1 + \alpha e^{-r/\lambda} \right)$$
 Strength Range

Do we see the extra dimensions?

Predictions vs experimental constraints

$$|\overline{\phi}_k|^2 \sim \alpha \approx \frac{(2\pi)^2}{(g_s M)^3} \frac{2|\phi_1(\tau_b)|^2}{I(\tau_b)^{1/2}} \frac{g_s^2}{\mathcal{H}^2}$$


$$m_k \sim \lambda^{-1} \approx \frac{\mathcal{H}}{2^{1/6}} \frac{2\pi}{\sqrt{g_s M}} I(\tau_b)^{1/4}$$

Triangle regions:

 $g_s M > 1$ Supergravity (α')

 $g_s < 1$ String loop expansion

 $M < M_{max}$ D3 Tadpole

Conclusions

- (compact) Extra dimensions \rightarrow Tower of 4d gravitons \rightarrow Tower of 4d GWs
- Phenomenological parameters $(\alpha, \lambda) \leftrightarrow$ String theory parameters $(g_s, M, ...)$ No conflict
- Wavefunction profiles are important! What's the effect on GWs?

Thank You

BACKUP SLIDES

Higher dimensional GWs

$$\Box_{10}h_{MN} - 2\bar{R}^{S}{}_{MNP}g^{PQ}h_{QS} = T_{MN}^{(1)}$$

give rise 4d GWs

$$\Box_4 h_{\mu\nu} + \left(\frac{\Delta_6}{c^{1/2}H} - \frac{2}{3}\Lambda_4\right) h_{\mu\nu} = T_{\mu\nu}^{(1)}$$
6d (compact)

$$h_{\mu\nu}(x, \mathbf{y}) = \sum_{k} h_{\mu\nu}^{k}(x) \phi^{k}(\mathbf{y})$$

Higher dimensional GWs

$$\Box_{10}h_{MN}-2$$

give rise 4d GWs

$$\Box_4 h_{\mu\nu} + \left(\frac{1}{6}\right)^2$$

Define the functions as

$$\left(\frac{\Delta_6}{c^{1/2}H} - \frac{2}{3}\Lambda_4\right)\phi^k(\mathbf{y}) = -m_k^2\phi^k(\mathbf{y})$$

⇒ Infinitely many orthogonal modes.

6d (compact)

$$h_{\mu\nu}(x, \mathbf{y}) = \sum_{k} h_{\mu\nu}^{k}(x) \phi^{k}(\mathbf{y})$$

The decomposition is defined by

$$\left(\frac{\Delta_6}{c^{1/2}H} - \frac{2}{3}\Lambda_4\right)\phi^k(\mathbf{y}) = -m_k^2\phi^k(\mathbf{y})$$

i.e. the functions $\phi^k(y)$ are eigenfunctions with eigenvalue $-m_k^2$ and orthogonal

$$\int d^6 \mathbf{y} \sqrt{g_6} \ H(\mathbf{y}) \phi_k(\mathbf{y}) \phi_{k'}(\mathbf{y}) = \mathcal{N}_{(k)}^2 \delta_{kk'}$$

Infinitely many solutions (discrete) ⇒ Tower of states

$$\Box_{4}h_{\mu\nu} + \left(\frac{\Delta_{6}}{c^{1/2}H} - \frac{2}{3}\Lambda_{4}\right)h_{\mu\nu} = 2\tilde{T}_{\mu\nu}^{(1)} \qquad h_{\mu\nu}(x,y) = \sum_{k'} h_{\mu\nu}^{k'}(x)\phi_{k'}(y)$$

$$\sum_{k'} \left(\Box_{4}h_{\mu\nu}^{k'} - m_{k'}^{2}h_{\mu\nu}^{k'}\right)\phi_{k'}(y) = 2\tilde{T}_{\mu\nu}^{(1)}(x,y) \qquad \int d^{6}y\sqrt{g_{6}} H(y)\phi_{k}(y)$$

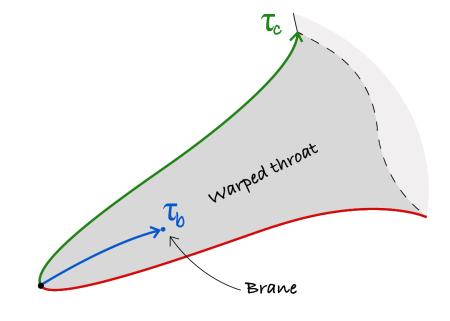
$$\Box_4 h_{\mu\nu}^k - m_k^2 h_{\mu\nu}^k = \mathcal{T}_{\mu\nu}$$

$$T_{\mu\nu} \equiv 2 \int d^6 \mathbf{y} \sqrt{g_6} \ H(\mathbf{y}) \phi_k(\mathbf{y}) \tilde{T}_{\mu\nu}^{(1)}(x,\mathbf{y})$$

$$\Box_4 h_{\mu\nu}^k - m_k^2 h_{\mu\nu}^k = \mathcal{T}_{\mu\nu} \qquad \qquad \mathcal{T}_{\mu\nu} \equiv 2 \int d^6 \mathbf{y} \sqrt{g_6} \ H(\mathbf{y}) \phi_k(\mathbf{y}) \tilde{T}_{\mu\nu}^{(1)}(x,\mathbf{y})$$

The warped extra dimensions contribute with

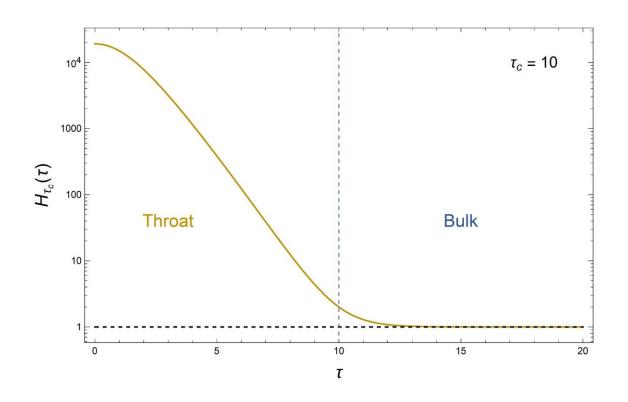
- \rightarrow Tower of GWs (k > 0) (high frequencies $f_{GW} \sim m_k$)
- → More sources
 - \rightarrow Bulk (e.g. h_{mn})
 - → Localised (e.g. brane fields)
- → Warped energy-momentum

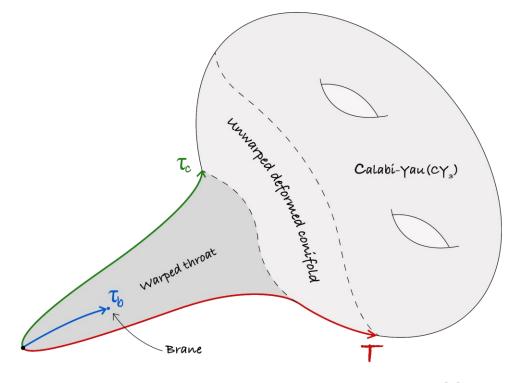

Warped deformed conifold

Klebanov-Strassler (KS) solution

$$ds^{2} = H(y)^{-1/2} g_{\mu\nu} dx^{\mu} dx^{\nu} + H(y)^{1/2} c^{1/2} g_{mn} dy^{m} dy^{n}$$

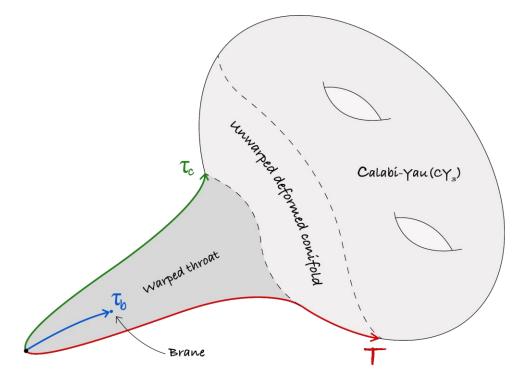
$$g_{mn} = \begin{cases} g_{mn}^{(KS)} & H(y) \gg 1\\ g_{mn}^{(CY)} & H(y) \sim 1 \end{cases}$$

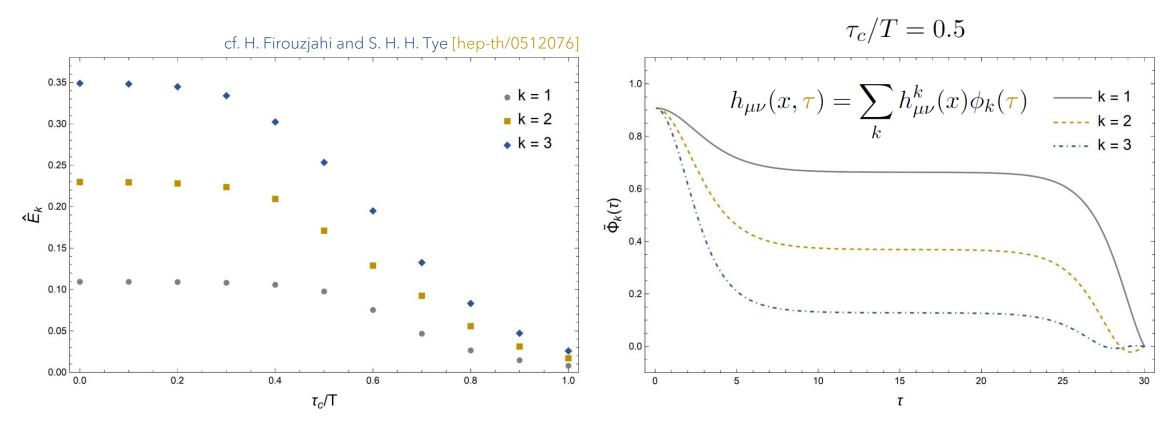

$$g_{mn}^{(KS)} = \frac{\epsilon^{4/3}}{2} \mathcal{K}(\tau) \begin{pmatrix} \frac{1}{3\mathcal{K}^3(\tau)} \mathbb{1}_2 & 0 & 0\\ 0 & \sinh^2(\tau/2) \mathbb{1}_2 & 0\\ 0 & 0 & \cosh^2(\tau/2) \mathbb{1}_2 \end{pmatrix}$$



Warped compactification

KS + Bulk


$$ds^{2} = H(y)^{-1/2} g_{\mu\nu} dx^{\mu} dx^{\nu} + H(y)^{1/2} c^{1/2} g_{mn} dy^{m} dy^{n}$$


Our paper [2204.02086]

- 1. 4d Minkowski
- 2. Trivial angular solutions ($\phi_k = \phi_k(\tau)$)
- 3. Unwarped conifold region ($\tau_c < \tau < T$)
- 4. Vanishing boundary conditions on CY₃ ($\tau = T$)
- 5. (3+1)-brane somewhere in the conifold ($\tau_b < T$)

Throat vs Bulk

There is a competition between warping and bulk size.

Each mode in the tower has its own wave equation

$$\Box_4 h_{\mu\nu}^k - m_k^2 h_{\mu\nu}^k = T_{\mu\nu}$$

Tower of frequencies $\omega_k \sim m_k \ \ (\Delta \omega = M_{KK}^w)$

	f_{GW} (Hz)	M_{KK}^{w} (eV)	$ au_b$	$ au_c$	$z^{1/3}$	r_{UV}	\mathcal{V}_{th}	MK
LISA	10^{0}	10^{-27}	195	239	1.51×10^{-47}	1.70	290	3259
LIGO-Virgo/ET	10^{4}	10^{-23}	168	211	1.51×10^{-43}	1.64	240	2906
UHF	10^{9}	10^{-18}	133	176	1.51×10^{-38}	1.57	183	2464